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Abstract. In the present work, linear regression models for the prediction of the free energies of
complexation between guest molecules andβ-cyclodextrin are deduced. For 70 compounds (mostly
pharmaca), the experimentally determined 1 : 1 stability constants are transformed into the respective
free energies, which are then correlated with molecular descriptors.

The statistically significant descriptors, which lead to models with remarkable predictive power,
indicate that besides volume, shape and lipophilicity, which have the largest contribution to the com-
plexation energy, complexation is also significantly influenced by the flexibility and the hydrogen
bonding capacity of the guest molecule.

Key words: host-guest systems, linear regression, molecular descriptors, statistical models, correla-
tion analysis

1. Introduction

Cyclodextrins (CDs) are cyclic macromolecules, obtained by the degradation of
starch byα-1,4-glucan-glycosyltransferase. They are composed of 6 (α-CD), 7 (β-
CD) or 8 (γ -CD) α(1→ 4) linked glucose units [1]. The molecular shape of CDs
resembles that of cones, having a hydrophobic cavity.

One of the most important properties of CDs is their ability to include small or-
ganic molecules (guests) in the cavity. The driving force of the complexation seems
to be the hydrophobic effect, but, nevertheless, the complexes are also stabilized by
van der Waals forces and hydrogen bonds [2].

The applications of cyclodextrins in pharmacy, environmental and technical
chemistry, or other branches are wide, due to the multiple effects inclusion can
have on the guest molecules: complexation with hydrophobic molecules makes
the latter more water soluble and may be used for selective extraction, avoiding
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organic solvents [3]. Light-, temperature- or oxidation-sensitive substances may be
protected by complexation with cyclodextrins [3]. Pharmacon-cyclodextrin com-
plexes often increase the bioavailability of the active substance and permit its
controlled release [3]. Being chiral (D-glucose units), CDs interact differently with
the enantiomers of the same compound, and can thus be used in enantioselective
chromatography [3].

From these considerations it is clear, that a knowledge of the complexation abil-
ities of guest molecules with CDs is necessary to decide whether or not a host-guest
complexation is useful in a particular application.

On the other hand, experimental determination of the complexation constants is
often difficult, mainly due to the low solubility of the guest molecules. A method
for theoretical prediction of the complexation properties of guest molecules, would
thus be desirable.

In the present work, we present a modality, based on multiple regression ana-
lysis, of theoretically estimating the free energies of complexations ofβ-CD:guest
systems. Although most of the data available express the binding affinity of guest
molecules to CDs in terms of stability constants, we correlate free energies (-RT
lnKcomplex) of complexation with molecular descriptors, from similar reasons like
those in QSAR: since energy is an additive quantity, it can be described by an
additive function of individual descriptors, each reflecting a certain contribution to
the total energy. In contrast, individual contributions to the overall stability constant
are multiplicative quantities.

2. Methods

As mentioned above, one of the driving forces of the host-guest inclusion is
the hydrophobic interaction, van der Waals forces and hydrogen bonding also
being important. It is obvious that the magnitude, shape and flexibility of the
guest molecules should also be crucial factors in the complexation process. Thus,
the following descriptors for modeling the host-guest complexation have been
considered:

(a) the molecular surface (S), and the molecular volume (V ) which is proportional
to the size of the molecule;

(b) the ovality (O) [4], defined as the ratio of the actual surface (S) and the min-
imum surfaceSmin, that is the surface the molecule would have if it was a
perfect sphere. It can be calculated from the actual molecular surface (S) and
the corresponding molecular volume (V ):

O = S

Smin
= S

4π
(

3V
4π

)2/3 . (1)

Hence the ovality is a descriptor of the molecular shape;
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(c) the partition coefficient (logP ), being proportional to the hydrophobicity of a
molecule, is used for the description of the hydrophobic interaction;

(d) the molecular refractivity, (MR), which is proportional to the volume and to
the polarizability (α) of a molecule. Since dispersion (van der Waals) forces
between two interacting moieties1 and2 are themselves proportional to their
polarizabilities (α1 and α2 ), MR can give information on whether or not
dispersion forces are important in the host-guest interaction;

(e) the3κ-shape index and the flexibility (φ) of a molecule, as defined by Kier
and Hall [5];φ is directly related to the degree of linearity and the presence
of rings and/or branching.

(f) the electrotopological index [6, 7],Si, of an atomi based on the electronegat-
ivity of that atom and its local topology.Si is calculated from an intrinsic state
value (Ii), and a perturbation (1Ii) on atomi by all other skeletal atoms:

Si = Ii +1Ii. (2)

Ii is a function of the principal quantum number of the atomi, the count of
s electrons and the count of valence electrons in the skeleton. Because we
deal with different classes of compounds, the comparison (i.e., correlation)
of Si values of certain atoms does not make sense (as it would in the case
of homologous compounds within the same class). Therefore, the sum ofSi
values over all atoms (E) is used as a descriptor;E describes whether the
molecular surface is hydrophilic or hydrophobic, and thus models, together
with logP , the lipophilicity of the guest molecule (see Discussion).

(g) the number of hydrogen bond donors present in the guest molecule (nHB);
donor groups considered are -OH, -NH, -SH;

(h) the number of heteroatoms (N, Cl, S, O) as indicator variables.

All properties excepting the ovality are calculated using the TSAR (tools for
structure-activity relationship) program [8] from the Oxford Molecular Simulation
Package. The ovality is calculated from the molecular surface (S) and the molecular
volume (V ) using Equation (1).

The regression models are also derived with the TSAR program, using multiple
linear regression (MLR) and partial least squares (PLS). In the case of MLR, the
two way stepping algorithm, which selects statistically significant variables via
their partialF -test, is employed. The quality of the models is estimated considering
the regression coefficientr, the overallF value which indicates whether the regres-
sion is significant or not, and thet values for testing the significance of individual
regression coefficients. TheF - and t-tests are briefly discussed in the Appendix.
The predictive ability of a regression model is reflected by the cross-validation
r2 (r2

cv) and is obtained as follows: after a required group of data is deleted, the
remaining data are used to produce a new modely, which is then employed to
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predict the value that has been excluded. A model is produced for each group of
data (n) and thepredictive residual sum of squares (PRESS)is calculated:

PRESS=
n∑
i=1

(yi − ŷi )2, (3)

whereŷi is the predicted, andyi the actual value. The value for the predictiver2
cv is

r2
cv = 1− PRESS

SSY
. (4)

SSY is the sum of squares of the observations, and measures the total variability in
the observations:

SSY=
n∑
i=1

(yi − ȳ)2. (5)

The closer the value ofr2
cv is to 1, the better is the predictive power. For a good

modelr2
cv should be close tor2.

3. Results

The 70 compounds used for deducing the regression models are listed in Table I.
From the references indicated in the table, the experimentally determined stability
constants (at 25◦C) for 1 : 1 complexes are converted into free energies (-RT lnK).

There are included only compounds for which the stability constants have been
determined by the same method, namely the solubility method [3].

The best model with respect to the correlation coefficientr, the standard error
s, theF -value and the predictiver2

cv is given by the following equation:

1G = −0.0186· S − 0.1767· logP + 7.109·O + 0.3305· φ − 0.2924·3 κ
+0.0443· E − 0.1442· nHB + 0.3921· nN + 0.9257· nCl − 12.794 (6)

r = 0.927, s = 0.377, F0 = 40.98, r2
cv = 0.812.

The F -test (see Appendix) indicates the significance of the regression model:
F0.05,9,60 = 2.04 � F0, in other words the regression equation is statistically
significant at the 95% level. The predictiver2

cv is high and fairly close tor2. r2
cv is

obtained by successively leaving outonecompound from the model building. The
quality of Equation (6) can be underlined also by the fact thatr2

cv is stable, when
a different number of groups is left out in cross validation: for 5, 10, 15 omitted
compounds, the respectiver2

cv values are 0.819, 0.821 and 0.812.
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Table I. Experimental and predicted values of free energies of complexation (kcal/mol).
(a) Prediction with best MLR model (Equation (6)), (b) prediction with PLS model
(Table IV).

Compound 1Gexperimental 1Ga
predicted 1Gb

predicted

1 Prostaglandin E31 −4.388 −4.357 −4.351

2 Prostaglandin F32 −4.202 −4.185 −4.152

3 Prostacyclin3 −4.013 −4.182 −4.102

4 Hydrocortisone3 −4.918 −5.040 −5.067

5 Beclomethasone dipropionate3 −4.142 −4.020 −4.187

6 Fludiazepam3 −3.182 −3.038 −3.006

7 Indomethacin3 −3.365 −3.360 −3.314

8 Flurbiprofen3 −5.036 −4.405 −4.419

9 Fenbufen3 −3.591 −3.949 −3.904

10Ketoprofen3 −3.897 −4.702 −4.635

11Piroxicam3 −2.654 −2.458 −2.414

12Phenobarbital3 −4.441 −3.803 −3.743

13Thiopental3 −4.472 −4.106 −4.118

14Phenythoin3 −4.168 −4.389 −4.355

15Sulphaphenazole3 −3.208 −3.075 −3.082

16Acetohexamide3 −4.007 −3.610 −3.611

17Clofibrate3 −4.252 −3.981 −3.989

18Menadion3 −3.095 −3.344 −3.332

19p-Ethylaminobenzoate3 −3.666 −3.700 −3.736

20p-Butylaminobenzoate3 −4.360 −4.149 −4.188

21p-Ethylhydroxybenzoate3 −4.109 −4.185 −4.181

22p-Butylhydroxybenzoate3 −4.630 −4.648 −4.652

23Medazepam3 −3.280 −3.412 −3.418

24Prednisolone acetate3 −5.109 −4.841 −4.882

25Cortisone3 −4.566 −4.903 −4.901

26Cortisone acetate3 −4.915 −4.599 −4.589

27Triamicinolone acetonide3 −4.767 −4.886 −4.932

28Dexamethasone3 −4.980 −4.831 −4.855

29Fluocinolone acetonide3 −4.723 −4.582 −4.627

30Hydrocortisone acetate3 −4.771 −4.695 −4.699

31Sulfapyridine3 −3.687 −3.907 −3.919

32Sulfadimethoxine3 −3.080 −2.967 −3.008

33Pentobarbital3 −4.115 −3.758 −3.744

34Cyclobarbital3 −3.697 −3.947 −3.919

35Hexobarbital3 −4.206 −3.95 −3.937

36Mephobarbital3 −4.315 −3.649 −4.586

37Triamicinolone diacetate3 −4.584 −4.007 −3.991

38Nitrazepam3 −2.692 −2.699 −2.742
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Table I. Continued.

Compound 1Gexperimental 1Ga
predicted 1Gb

predicted

39Nimetazepam3 −2.364 −2.648 −2.718

40m-Methylcinnamic acid3 −4.003 −3.709 −3.812

41p-Hydroxycinnamic acid3 −3.859 −3.609 −3.705

42Griseofulvine9 −2.006 −2.603 −2.523

43Hydrochlorothiazide10 −2.400 −2.160 −2.150

44Hydroflumethiazide10 −2.052 −2.557 −2.467

45Mefenamic acid11 −3.403 −3.620 −3.604

46Picotamide12 −2.395 −2.831 −2.842

47Progabide13 −3.461 −2.840 −2.849

48Proscillaridin14 −4.922 −5.029 −4.971

49Prostaglandine A15
1 −4.274 −4.332 −4.317

50Prostaglandine B15
1 −3.928 −4.308 −4.284

51Sulfanilamide16 −3.774 −2.998 −3.047

52Sulfamethomidine17 −3.182 −2.845 −2.877

53Furosemide18 −2.435 −2.731 −2.741

54Digitoxigenin19 −5.588 −5.601 −5.643

55Cinnarizine20 −4.964 −5.044 −4.079

56Dehydrocholic acid19 −5.179 −5.252 −5.271

57Chlorothiazide10 −1.548 −1.927 −1.891

58Carbutamide17 −3.126 −2.662 −2.729

59Betamethasone valerate3 −4.722 −4.672 −4.685

60Paramethasone3 −4.625 −4.828 −4.858

61Sulfamonomethoxine17 −3.384 −3.196 −3.233

62Sulfisomidine17 −2.872 −3.126 −3.159

63Sulfisoxazole17 −3.167 −3.299 −3.297

64Tolnaftate21 −5.235 −5.353 −5.330

65Digitoxin3 −5.747 −5.713 −5.712

66Acenocumarol22 −3.744 −3.366 −3.382

67Allobarbital23 −2.705 −3.292 −3.259

68Amobarbital23 −3.735 −3.905 −3.915

69Bendroflumethiazide10 −2.589 −2.988 −2.952

70Barbital23 −2.435 −3.547 −3.494
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Figure 1. Predicted free energies of complexation (kcal/mol), plotted versus experimental
values.

In Table I measured and predicted values are presented. They show mostly a
good agreement, i.e., in 80% of the cases, the residual value between the exper-
imental and predicted value is below the standard error. The experimental values
are plotted versus the predicted ones in Figure 1.

The statistics of the individual regression coefficients is shown in Table II. Since
thetα/2,60 = 2.0 forP = 0.95, the condition|t0| > t0.025,60 is fulfilled for each of the
regression coefficients, i.e., each of them is statistically significant (see Appendix).

In Table III the correlation matrix of the main descriptors, considered as
candidates for the regression models, is presented.

It shows, that some of them are strongly correlated:S with V , MR with V ,
(per definition- and implicitly toS) and the sumE of electrotopological indicesSi
with V . It is therefore not surprising, that a good model is also obtained with the
molecular refractivity MR instead ofS:
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Table II. Statistics and significance of the coefficients of Equation
(6).

Descriptor Coefficient SE t0-Value t-Probability

S −0.0186 0.0030 −6.200 0

logP −0.1767 0.0537 −3.290 1.6× 10−3

O 7.1096 1.1181 6.358 0

ϕ 0.3305 0.1100 3.004 3.8× 10−3

E 0.0443 0.0089 4.977 0

nHB −0.1442 0.0699 −2.063 4.3× 10−2

nN 0.3921 0.0465 8.432 0

nCl 0.9257 0.1384 6.688 0
3κ −0.2925 0.1082 −2.702 8.9× 10−3

Constant −12.7497 1.2558

1G = −0.0344·MR − 0.2164· logP + 5.374·O + 0.0872· φ + 0.0317· E
−0.1962· nHB + 0.3868· nN + 0.9583· nCl − 0.1722·3 κ − 11.015 (7)

r = 0.917, s = 0.401, F0 = 35.35, r2
cv = 0.784.

From the definition, MR is proportional to the molecular volume but also to the
polarizability of a molecule. Hence it can be regarded also as a measure of how
important dispersion forces are for the complexation process. The fact, that substi-
tuting S with MR does not improve the quality of the model, suggests that for the
given data set MR does not contain any additional information compared toS, i.e.,
that the contribution to the variation stemming from MRs is due to the sizes of the
molecules. Omission of the indictor variables (nN, nCl, nHD) substantially affects
the quality of the regression equations (see Discussion):

1G = −0.0087· S − 0.3298· logP + 2.153·O − 0.1427· φ
+0.0193· E + 0.2548·3 κ − 5.525 (8)

s = 0.668, r = 0.734, F0 = 12.26, r2
cv = 0.438.

To get a clearer insight into the importance of the individual contributions to com-
plexation, MLR and PLS models are deduced, using variables scaled to zero mean
and unity variance; thus the absolute values of the regression coefficients directly
indicate the importance of the respective variable. PLS is a variant of principal
components regression (PCR) and therefore permits analysis of highly correlated
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Table III. Correlation matrix of the main descriptors used in the deduction of the regression models. Strong
correlations (r > 0.9) are printed in bold.

S V logP O φ E nHD nN nCl
3κ MR

S 1

V 0.97 1

logP 0.28 0.22 1

O 0.67 0.47 0.37 1

φ 0.82 0.69 0.35 0.83 1

E 0.87 0.93 −0.01 0.36 0.57 1

nHD 0.49 0.47 −0.36 0.35 0.44 0.56 1

nN −0.36 −0.34 −0.37 −0.36 −0.31 −0.25 −0.005 1

nCl −0.04 −0.02 0.09 −0.12 −0.05 −0.03 −0.34 0.8 1
3κ 0.54 0.36 0.39 0.85 0.87 0.26 0.29 −0.12 −0.05 1

MR 0.96 0.98 0.26 0.53 0.68 0.86 0.42 −0.32 −0.003 0.38 1
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Table IV. Coefficients and pseudo-
regression coefficients of the best
MLR (Equation (6)) and PLS model,
obtained from variables scaled to zero
mean and unity variance.

Descriptor Coefficient

MLR PLS

V −1.0370

S −1.5612 −0.4868

logP −0.2521 −0.2382

O 0.8518 0.6311

φ 0.6910 0.6861

E 0.7791 0.9072

nHD −0.1451 −0.1712

nN 0.5459 0.5347

nCl 0.3262 0.3301
3κ −0.5397 −0.5784

Constant −3.8443 −3.8117

r2cv 0.812 0.829

variables; it is particularly useful, when the number of descriptors exceeds the num-
ber of experimental values. Table IV shows the pseudo-regression coefficients for
the best PLS model (highestr2

cv) , together with the scaled coefficients of Equation
(6): they testify the high contribution of steric and lipophilicity parameters (see
Discussion).

The good predictive ability of Equation (6) and of the PLS equation is also ex-
emplified by ade novoprediction, using compounds not included in the deduction
of the model, as shown in Table V.

4. Discussion

In Table IV the importance of individual contributions to the complexation process
is directly related to the absolute value of the respective regression coefficients.
It can be remarked that the major contribution to the complexation energy stems
from steric descriptors (V and/orS, O 3κ), followed by descriptors of the lipo-
philicity (E, logP ). The fact that the highest contribution comes from the volume
(in the PLS model), from the molecular surface (in the MLR model) and from
the ovality of the guest molecules, indicates that the considered host-guest sys-
tems are well defined inclusion complexes. The ovality is a relative quantity and
must therefore be interpreted together with the volume (or the surface).O andS
have opposite contributions to the complexation energy and are in balance: if the
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Table V. De novoprediction of free energies of complexation (kcal/mol), using
(a) Equation (6) and (b) the PLS model from Table IV.

Compound 1Gexperimental 1Gpredicted
a 1Gpredicted

b

Diazepam −3.182 −3.226 −3.217

Prostaglandine E2 −4.216 −4.120 −4.057

Sulfadiazine −3.441 −3.293 −3.316

Sulfamerazine −2.696 −3.322 −3.350

Benzidine −4.567 −3.674 −3.722

m-HO-cinnamic acid −3.497 −3.643 −3.734

p-Methyl-cinnamic acid −3.615 −3.665 −3.772

Scilliroside −4.132 −4.179 −4.086

Triflumizole −3.630 −2.720 −2.750

volume is large (favorable contribution to1G), the ovality must be also large (non-
favorable contribution to1G), otherwise the compound cannot enter the cavity of
the cyclodextrin, which in the case ofβ-CD has an average diameter of 0.78 nm
[1]. The 3κ shape index is related to the degree and centrality of branching in the
guest molecule: it is larger when branching is nonexistent, or when it is located at
the extremities of the molecular graph. The negative sign of the regression coef-
ficient indicates that non-branched or terminally branched molecules should have
increased complexation ability.

The larger the partition coefficient (logP ), i.e., the more hydrophobic a com-
pound is, the higher the stabilization of the complex due to the hydrophobic effect
will be. This is in agreement with experimental findings, that the hydrophobic
effect is a major force in the complexation process [2].

The sum of electrotopological indices,E, is decreased by less electronegat-
ive atoms, buried in the skeleton, and increased by terminal (i.e., generally more
exposed) atoms of high electronegativity. An increasedE-value will thus occur in
molecules with a rather hydrophilic molecular surface; this aspect is not considered
in the calculation of logP , since the corresponding increments do not depend on
topological features. Hence, the destabilizing effect of increasedE-values on the
host-guest complexation can be explained from the above considerations. Being a
measure of how polar the molecular surface of a molecule is,E is related to the
hydrophilicity of the molecule, and thus represents a supplement to logP .

The flexibility of the guest also contributes substantially to the complexation.
The largerφ is, the more flexible is a molecule. Because the coefficient ofφ is
positive, an increased value will lower the complexation energy: more rigid guests
will have better complexation ability than more flexible ones, because the host-
guest interaction is better defined in the first case.
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MR does not improve the quality of a model, when it substitutesS; moreover,
if both, MR andS, are considered in the deduction of models, as in Equation (6),
only S is selected by the stepping algorithm, MR being statistically insignificant.
These facts suggest that the variation in the MRs is stemming basically from the
variation of the molecular size.

Some of the descriptors discussed above are rather strongly correlated with each
other (Table III); this makes an interpretation of individual contributions somewhat
difficult. On the other hand, excluding correlated descriptors from the regression
equations substantially affects the predictive quality of the model, indicating that
they contain also complementary information. However, the interpretation is facil-
itated by analyzing to what extend the information is complementary or similar.
Consider, for example, the molecular surface,S, and the sum of electrotopological
indices,E. The high correlation of 0.87 results essentially from the fact that both
descriptors depend on the size (on the number of atoms) of a molecule. On the other
hand,E reflects also the polarity of the molecular surface: by omittingE from
Equation (6) the cross-validationr2 (r2

cv) drops from 0.812 to 0.741, which is a
significant decrease of the predictive power. Evidently, in these cases of strong cor-
relation conclusions on the relative importance of individual contributions cannot
be inferred from the regression coefficients.

Indicator variables, which may be regarded as correction factors, are of great
importance, as demonstrated by comparing Equations (6) and (8). In the case of
nHB the justification for such a correction is obvious: compounds with hydrogen
bond donors have an additional possibility to interact with the guest’s hydroxyl
groups. Thus, if hydrogen bonding is significant in the complexation process,nHB

will directly reflect the contribution of the energy of hydrogen bonds to the overall
complexation energy.

For the indicator variablesnN andnCl the justification is not as straightforward,
but one has to keep in mind that in structure-activity studies series of homolog-
ous compounds are usually used; in the present study substances with a large
variability (stemming from different classes) are employed to deduce the regres-
sion models: it is obvious that correction factors are necessary to improve the
correlation. Considering the variability of the studied compounds, the obtained
models are surprisingly good. A similar attempt to our approach has been made
to correlate experimentally determined complex formation constants with meas-
ured quantities [27], resulting in a simple regression model. The authors used a
dipolarity/polarizability parameter, solute and solvent hydrogen bonding terms and
an intrinsic molecular volume of the solute in their study, which comprised 20
organic molecules. Their results are somewhat in variance with our findings, as the
polarizability of the solute molecules appears to be important for the stability of the
CD-guest complexes, while the hydrogen bonding capacity of the solute appears
to be insignificant. However, one has to keep in mind that the size of and structural
variance in our data set is much larger than in the respective paper. Moreover,
the statistical significance of individual regression coefficients sensitively depends
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on the complexity of the model. A significant descriptor in a simple model may
loose its significance in a more complex model, while other descriptors, formerly
insignificant, become important. The success of correlation analysis applied to such
different compounds as in the present study can be explained by the fact, that the
host-guest interaction in the case of CDs is not as specific as it is for receptor-ligand
interaction: while e.g., in enzyme-substrate dockinglocal (steric, hydrophobic and
electrostatic) properties of the ligand are crucial for an optimal interaction, for the
CD-guest systemsoverallmolecular properties like volume, shape, hydrophobicity,
ovality or flexibility appear to be sufficient for a good description of complexation.

5. Conclusions

In the present work regression models are presented which permit a good predic-
tion of the free energies of complexation betweenβ-CD and guest molecules. The
statistically significant descriptors are molecular surface (S), ovality (O), 3κ shape
index, flexibility (φ), partition coefficient (logP ), the sum of the electrotopological
indicesE and indicator variables. LogP describes the lipophilicity andE the
polarity of the molecular surface, whileS, O, 3κ are descriptors of magnitude
and molecular shape of the guest, respectively. Rigid molecules (lowφ) appear
to have higher complexation ability than flexible ones, since the host-guest com-
plex is better defined. Molecules with hydrogen bond donors have the additional
possibility to stabilize the complex, by forming hydrogen bonds with the host’s
hydroxyl groups, reflected innHB. The predictive abilities of the model is good,
reflected in high predictiver2

cv values at different leave-out levels and goodde novo
predictions. Moreover, the used descriptors can be easily and rapidly calculated
from commercial modeling packages.
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Appendix

5.1. SIGNIFICANCE OF THE REGRESSION: THE f -TEST

If two variances,s2
1 and s2

2 of a random variable are consistent, i.e., if their
differences are not significant, the ratioF0 = s2

1/s
2
2 is also a random variable

and is described by theF (Fisher)-repartition. The probability density of theF -
distribution depends on the degrees of freedom,ν1 andν2 of the two variances:
q = q(F ; ν1, ν2). Since the analytical expression ofq is known,Fα,ν1,ν2 values
can be calculated for any probabilityP (α = 1− P ) from the definition of the
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repartition function as the probability, that a certain random variable is lower than
a given value:

P(F < Fα,ν1,ν2) = Q(Fα,ν1,ν2) =
∫ Fα,ν1,ν2

0
q(F ; ν1, ν2)dF. (A1)

TheFα,ν1,ν2 values are usually found in appropriate tables. For exampleF0.05,2,4 =
6.94, i.e., aF -distributed random variable with 2 and 4 degrees of freedom will
be lower than 6.94 with a probability of 0.95 (at 95% level). TheFα,ν1,ν2-values
are used by theF -testto accept or reject the hypothesis, whether two variances are
consistent or not. Thus, ifF0 > Fα,ν1,ν2, the hypothesis is rejected, and the rejection
is the more significant, the largerF0 is.

In the concrete case of testing the significance of a regression, theF -test is
applied as follows: Considern dependent variables (observations)yi , each be-
ing related to(nxk) independent variables,xi1, xi2, . . . , xik , by the regression
coefficientsaj :

yi = a0 +
k∑
j=1

ajxij . (A2)

The smaller the sum of squares of the residuals (SSE), i.e., of the differences
between the observed values and predicted ones, compared to the sum of squares
of the regression, SSR, obtained from the differences between predicted values and
the mean value, the better is the regression model.

One can show [25] that SSR hask degrees of freedom, whereas the sum of
squares of the residuals, SSE, has(n− k − 1) degrees of freedom, and, moreover,
that SSR and SSE are independent. Hence the variation due to the regression and
due to the residuals are, respectively

s2
R =

SSR

k
=
∑n

i=1(ŷi − ȳ)2
k

, s2
E =

SSE

n− k − 1
=
∑n

i=1(yi − ŷi )2
n− k − 1

. (A3)

Since SSE should be as small as possible, the ratioF0 = s2
R/s

2
E should be large and

the hypothesis thats2
R ands2

E are consistent should be rejected. This is the case if
F0 > Fα,k,n−k−1 and thus the regression is significant. Some authors suggest [26],
that for a satisfactory predictive power, theF0-ratio should exceed at least four
times the percentage pointFa,k,n−k−1.

5.2. SIGNIFICANCE OF INDIVIDUAL REGRESSION COEFFICIENTS: THE t -TEST

Following a similar argumentation as above, the significance of individual re-
gression coefficients is usually tested employing thet (Student)-test. The variable
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t0 = aj/se(aj ), wherese(aj ) denotes the standard error of the regression coef-
ficient aj , is t-distributed. If |t0| > tα/2,n−k−1, the coefficient will be considered
significant.
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